
Project Management using ProjMgr

Table of contents

1 Overview... 2

2 Directory Structure..2

2.1 bin .. 3

2.2 lib.. 3

2.3 Component Subdirectories..3

2.4 Documentation..4

3 The Project File... 4

4 Build File Generation using ProjMgr..6

5 JML... 6

Copyright © 2003-2006 The XLattice Project All rights reserved.

1. Overview

ProjMgr is a tool for managing projects like XLattice which consist of a number of
components which are used together but developed more or less independently. Each
component will have its own source and test directories and the software for each will be
delivered separately. However shared resources such as jars will be found in a common
repository.

XLattice uses Ant to manage builds and JUnit to automate unit testing. All components
inherit common properties from a shared project.xml control file and then have specific
characteristics specified in a local project.xml . The Ant builds and JUnit unit tests are
controlled by two files: classpath.sh sets up the Java classpath and build.sh is used
by Ant during the build (under Windows, .bat files provide the same service).

ProjMgr helps keep component development consistent by generating build files from the two
project.xml files. If executed in a component's base directory, ProjMgr will generate five
files:

build.xml -- the Ant build file
classpath.sh -- sets up the Java classpath, invoked by build.sh
build.sh -- runs Ant using build.xml
classpath.bat -- Windows equivalent of classpath.sh
build.bat -- runs Ant under Windows

(Note: the Windows versions of these files are not created by projmgr 0.1, but should be
in the next release.)

The init target of build.xml will make sure that all necessary component subdirectories
exist. To create a new XLattice subproject, dummy , for example, requires two steps. First,

cd $XLATTICE_HOME
mkdir dummy
cd dummy
projmgr -a -c

creates the necessary subdirectory and configuration files. Then

./build.sh init

creates the subdirectories for Java source code, unit tests, documentation (jml and xdocs
), and build results ('target' and its subdirectories).

2. Directory Structure

The current top-level XLattice directory structure is:

xlattice

Project Management using ProjMgr

Page 2
Copyright © 2003-2006 The XLattice Project All rights reserved.

http://ant.apache.org
http://www.junit.org

project.xml
bin
lib
corexml
projmgr
util

The first file, project.xml , sets up configuration elements shared by the entire project.

2.1. bin

The bin directory must be on the path. In a UNIX/Linux environment running bash, this is
effected by something similar to

export XLATTICE_HOME=$HOME/xlattice
export PATH=$XLATTICE_HOME/bin:$PATH

XLattice components normally put invocation scripts into xlattice/bin .

2.2. lib

The lib directory is a repository for the jars used by XLattice components. These are
grouped into subdirectories by group ID, so that the XLattice jars, for example, are found in
xlattice/lib/xlattice :

xlattice
lib
xlattice
corexml-0.1.jar
projmgr-0.1.jar
util-0.1.jar
LICENSE.txt

2.3. Component Subdirectories

util, corexml, and projmgr are the component subdirectories.

These have a common structure, with minor variations. For example, the
xlattice/corexml subdirectory looks like this:

xlattice
corexml
project.xml
build.xml
classpath.bat
classpath.sh
build.bat
build.sh
src
java

Project Management using ProjMgr

Page 3
Copyright © 2003-2006 The XLattice Project All rights reserved.

test
target
classes
test-classes
docs

jml
xdocs

project.xml contains configuration information for the component.

The next five files are generated by projmgr from the configuration file, using both
information from project.xml and defaults from the parent, ../project.xml .

The directories that follow are created by Ant the first time it is run. src/java contains
Java source code organized by package name. The code for org.xlattice.projmgr ,
for example, is found under src/java/org/xlattice/projmgr . Source code for unit
tests is in a parallel hierarchy under src/test .

During the build, compilation generates the same tree structures under target , with source
code classes under target/classes and compiled test clases under
target/test-classes .

2.4. Documentation

Documentation production is similarly automated. Javadocs generated from the source code
are written to target/docs/api . HTML documentation generated from .xml files
under xdocs also appears under target/docs .

The only part of the process that is not currently automated is the translation of JML scripts
into the XML-format files used to generate HTML. This problem should be addressed in the
near future, probably by projmgr-0.3 .

3. The Project File

There is a project file, project.xml, for each XLattice component. This is an XML file
containing a single <project> element. Its most important subelements are

name description required?

extends path to any parent configuration
file

no

id a single-word name for the
component, conventionally in
lower case

yes

name a more descriptive name or
phrase, conventionally several
words in mixed uppper and
lower case

yes

Project Management using ProjMgr

Page 4
Copyright © 2003-2006 The XLattice Project All rights reserved.

version a decimal number with optional
single-letter extension, for
example 4.2 or 0.1a

yes

description a paragraph or so describing
the component

no

shortDescription brief summary of the above no

logo logo for the component, usually
in .png file format,
conventionally found under
xdocs/images

no

organization described in more detail below no, defaults

dependencies described in more detail below no

The <organization> element is used for generating documentation. It is specified in the
parent project.xml , can be overridden in the component configuration file, but should
not be.

name description required?

name legal name of the organization,
for use in license and copyright
notices

no

url URL of the organization's Web
site

no

logo organization logo, for example
"xdocs/images/xlattice.png"

no

If there are any dependencies, they are described by repeating <dependency> subelements.
These have the form

name description required?

groupId group name, such as
xlattice or ant

yes

artifactId product or component name yes

version version number consisting of
alphanumeric characters,
digits, dots, dashes, but no
spaces

no

type file extension, defaults to jar no

url where to get the dependency yes

These subelements are used to build a file name of the form artifactId.type or

Project Management using ProjMgr

Page 5
Copyright © 2003-2006 The XLattice Project All rights reserved.

artifactId-version.type , depending upon whether a version is specified. Ant will
look for this in libdir/groupId . If it is not present, Ant will try to get it over the Internet
from urlartifactId-version.type .

So if for example we have

groupId xlattice

artifactId util

version 0.1

url http://www.xlattice.org/jars/

then Ant will look for ../lib/xlattice/util-0.1.jar and failing to find that will
attempt to fetch it from http://www.xlattice.org/jars/util-0.1.jar .

Notice that while some punctuation marks are automatically supplied, the terminating slash
on the URL cannot be. If there is no slash at the end of the URL, the system interprets this as
an instruction to add a space to the URL before appending the name of the jar.

A future revision of projmgr will change the structure of the dependency element,
probably by adding an optional or alternative fullurl subelement, possibly in other ways.

4. Build File Generation using ProjMgr

projmgr is a command line utility. In its current form the UNIX version takes several
options:

projmgr [-a] [-c] [-h] [-v]

-a generate build.xml for Ant
-c create the classpath.{bat,sh} and build.{bat, sh} command files
-h display a help message
-v show the version number

If no option is specified, running projmgr has no effect.

Configuration and command files are created in the current directory from the information in
./project.xml .

5. JML

XLattice currently uses Maven to generate its HTML documentation. Maven expects input as
XML, in so-called Anakia format.

Note:
These references to Maven are obsolete.

Project Management using ProjMgr

Page 6
Copyright © 2003-2006 The XLattice Project All rights reserved.

http://www.xlattice.org/jars/

Writing in XML is tedious, error-prone, and time-consuming. JML, part of the ProjMgr
component, makes the author's job much simpler by automatically generating XML from
ordinary text with some lightweight markups.

JML is based on the Antlr lexer/parser generator and was specifically inspired by Terence
Parr's TML . It differs from TML in minor points of syntax but more importantly in what it
generates. Whereas TML converts text directly into HTML, JML produces XML in a form
designed for further transformation. This allows us to use JML to produce body copy like this,
but then feed the output into other tools which add menus, headers, and footers to make the
finished HTML Web page.

JML is more fully documented in the ProjMgr API, which can be reached via the menu to the
left. An Ant task is also forthcoming. On the other hand, many will find it easier to understand
how to use JML by looking through the JML script that produced this page,
jml/components/projmgr/index.jml.

Project Management using ProjMgr

Page 7
Copyright © 2003-2006 The XLattice Project All rights reserved.

http://www.antlr.org
http://www.antlr.org/TML/index.tml

	1 Overview
	2 Directory Structure
	2.1 bin
	2.2 lib
	2.3 Component Subdirectories
	2.4 Documentation

	3 The Project File
	4 Build File Generation using ProjMgr
	5 JML

